Generalizations of optimal transport: Sinkhorn divergences and Unbalanced Gromov-Wasserstein

Thibault Séjourné

LTS4 Group Meeting, EPFL - 14th October, 2020

Joint work with Francois-Xavier Vialard, Gabriel Peyré, Jean Feydy and Alain Trouvé

Introduction

Some of machine learning challenges are

- matching point clouds of \mathbb{R}^d up to isometries^1
- graph matching²

¹Alaux, J., Grave, E., Cuturi, M., & Joulin, A. (2018). Unsupervised hyperalignment for multilingual word embeddings. ²Vayer, T., Chapel, L., Flamary, R., Tavenard, R., & Courty, N. (2018). Fused Gromov-Wasserstein distance for structured objects.

Several models for measures, most commonly pointclouds $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$.

- Most often measures are normalized to mass 1 (i.e. are probabilities).
- Sometimes too restrictive:
 - \rightarrow Normalizing data is unadapted.
 - \rightarrow Avoid matching geometric outliers.³

From Schiebinger et al.

³Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., ... & Lee, L. (2019).

Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming.

Optimal transport displays three restrictions:

- Compares measures with same mass,
- Compares measures defined on the same space,
- Scales poorly in numerical solvers : $O(n^3 \log(n))$.

There exists extensions to overcome these issues:

- Unbalanced optimal transport,
- Gromov-Wasserstein distances,
- Entropic regularization.

- 1. Background UOT (\bullet)
- 2. Sinkhorn algorithm (\bullet + \bullet)
- 3. Sinkhorn divergence (\bullet + \bullet)
- 4. Unbalanced Gromov-Wasserstein (+)
- 5. Implementation of UGW (\bullet + \bullet + \bullet)

Unbalanced OT

Optimal Transport (OT)

Balanced Optimal Transport Distance⁴

$$\mathsf{OT}(\boldsymbol{\alpha},\boldsymbol{\beta}) \stackrel{\text{\tiny def.}}{=} \min_{\boldsymbol{\pi} \geq 0} \left\{ \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} : \begin{array}{c} \pi \mathbf{1} = \boldsymbol{\alpha} \\ \pi^{\top} \mathbf{1} = \boldsymbol{\beta} \end{array} \right\}$$

$$x_1$$

 x_2 y_2
 y_2
 y_2
 y_3

Called p-Wasserstein distance for $C = d^p$.

Intuition: Moving π_{ij} grams from x_i to y_j costs $\pi_{ij} \times C_{ij}$. **Choice of C** \rightarrow Choice of geometric prior.

⁴Kantorovich, L. (1942). On the transfer of masses (in Russian).

Idea: Soften the constraint $\pi 1 = \alpha \rightarrow \text{KL}(\pi 1 | \alpha)$

Definition - Unbalanced OT⁵

For any **positive** measures $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ one defines $UOT_{\rho}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \inf_{\pi \ge 0} \mathcal{L}_{1}(\pi)$ where $\mathcal{L}_{1}(\pi) \stackrel{\text{def.}}{=} \sum_{i,j} C_{ij}\pi_{ij} + \rho \text{KL}(\pi 1 | \boldsymbol{\alpha}) + \rho \text{KL}(\pi^{\top} 1 | \boldsymbol{\beta}).$

- Two dynamics: transportation vs creation/destruction.
- Possibility of other penalties: TV, or Csiszàr divergence D_φ.
- Balanced OT is retrieved with $\rho \to \infty$ or $D_{\varphi} = \iota_{(=)}$.

⁵Liero, M., Mielke, A., & Savaré, G. (2018). Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures.

Entropic Optimal Transport

Regularization of OT

Reminder: OT is computationally expensive and non-smooth **Idea:** Add an entropic penalty $\varepsilon \text{KL}(\pi | \alpha \otimes \beta)$

Entropic Unbalanced OT⁶ ⁷

$$\mathsf{JOT}_{\varepsilon,\rho}(\boldsymbol{\alpha},\boldsymbol{\beta}) \stackrel{\text{\tiny def.}}{=} \inf_{\pi \ge 0} \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathrm{KL}(\pi 1 | \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi^\top 1, \boldsymbol{\beta}) \\ + \varepsilon \mathrm{KL}(\pi | \boldsymbol{\alpha} \otimes \boldsymbol{\beta})$$

⁶Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport.

⁷Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2018). Scaling algorithms for unbalanced optimal transport problems. The dual for balanced OT reads

$$\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\beta) = \sup_{f,g} \sum_{i} f_{i} \boldsymbol{\alpha}_{i} + \sum_{j} g_{j} \beta_{j} - \varepsilon \sum_{i,j} (e^{\frac{f_{i}+g_{j}-\mathsf{C}_{ij}}{\varepsilon}} - 1) \boldsymbol{\alpha}_{i} \beta_{j}.$$

The alternate dual ascent is straightforward to compute:

Alternate dual ascent

Given any initialization f_0 . At time t one has (f_t, g_t) . Then iterate until convergence:

- 1. Fix f_t and find optimal g in the dual $\rightarrow g_{t+1}$,
- 2. Fix g_{t+1} and find optimal f in the dual $\rightarrow f_{t+1}$.

Sinkhorn algorithm for balanced OT

The dual for balanced OT reads $OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \sup_{f,g} \sum_{i} f_{i} \boldsymbol{\alpha}_{i} + \sum_{j} g_{j} \boldsymbol{\beta}_{j} - \varepsilon \sum_{i,j} (e^{\frac{f_{i} + g_{j} - C_{ij}}{\varepsilon}} - 1) \boldsymbol{\alpha}_{i} \boldsymbol{\beta}_{j}.$

Sinkhorn algorithm in Balanced OT

Writing
$$K = (e^{-C_{i,j}/\varepsilon})_{ij}$$
, $u = (e^{f_i/\varepsilon})_i$ and $v = (e^{g_j/\varepsilon})_j$, it reads
 $u_{t+1} \leftarrow 1/K(\beta \odot v_t), \qquad v_{t+1} \leftarrow 1/K^{\top}(\alpha \odot u_{t+1}).$

 \Rightarrow Matrix-vector operations fastly parallelizable on GPU !

Log-stabilized Sinkhorn

$$f_i \leftarrow -\varepsilon \log \sum_j e^{(g_j - \mathsf{C}_{ij})/\varepsilon} \beta_j, \quad g_j \leftarrow -\varepsilon \log \sum_i e^{(f_i - \mathsf{C}_{ij})/\varepsilon} \alpha_i$$

Unbalanced Sinkhorn algorithm

Proposition - Unbalanced Sinkhorn algorithm

The unbalanced Sinkhorn algorithm is the composition of its balanced counterpart with a pointwise operator *A*. It reads

$$f_i \leftarrow A\Big[-\varepsilon \log \sum_j e^{(g_j - \mathsf{C}_{ij})/\varepsilon} \beta_j\Big], \ g_j \leftarrow A\Big[-\varepsilon \log \sum_i e^{(f_i - \mathsf{C}_{ij})/\varepsilon} \alpha_i\Big].$$

- Thm: Sinkhorn algorithm converges in many settings.
- A is pointwise \Rightarrow same complexity as Balanced Sinkhorn.
- A is explicit and GPU-compatible for many settings (TV, ...)
 - Balanced OT: A(x) = x,
 - Kullback-Leibler (ρ KL): $A(x) = \tau \cdot x$ with $\tau = \rho/(\varepsilon + \rho)$
- Same compositional structure with (K, u, v)

Correcting the entropic bias -Sinkhorn divergence

Entropic bias

Problem: $\mathcal{L} = OT_{\varepsilon}$ does not retrieve β for $\varepsilon > 0$.

Not a distance: $\mathsf{OT}_{\varepsilon}(\alpha, \alpha) > 0$, $\exists \alpha \in \mathcal{M}_{1}^{+}(\mathcal{X}), \mathsf{OT}_{\varepsilon}(\alpha, \beta) < \mathsf{OT}_{\varepsilon}(\beta, \beta).$

 \Rightarrow One cannot crossvalidate the parameter ε .

Unbalanced Sinkhorn Divergence

Definition

Setting $m(\mu) = \sum_{i} \mu_{i}$, we define $S_{\varepsilon,\rho}(\alpha,\beta) \stackrel{\text{def.}}{=} \text{UOT}_{\varepsilon,\rho}(\alpha,\beta) - \frac{1}{2}\text{UOT}_{\varepsilon,\rho}(\alpha,\alpha) - \frac{1}{2}\text{UOT}_{\varepsilon,\rho}(\beta,\beta) + \frac{\varepsilon}{2}(m(\alpha) - m(\beta))^{2}.$

It extends the balanced Sinkhorn divergence⁸ ⁹.

Remark: When $\alpha = \beta$, one has $S_{\varepsilon,\rho}(\alpha, \beta) = 0$.

Is it positive ? Definite ? Smooth ?

⁸Ramdas, A., Trillos, N. G., & Cuturi, M. (2017). On wasserstein two-sample testing and related families of nonparametric tests.

⁹Genevay, A., Peyré, G., & Cuturi, M. (2018, March). Learning generative models with sinkhorn divergences.

Theorem [S., Feydy, Vialard, Trouve, Peyre '19]

For any Lipschitz cost C on a compact set s.t. $k_{\varepsilon} \stackrel{\text{def.}}{=} e^{-\frac{C}{\varepsilon}}$ is a positive universal kernel, for any $\varepsilon > 0$

- S_{ε,ρ} is convex, positive, definite.
- It is (weakly) differentiable.
- One has $S_{\varepsilon,\rho}(\alpha,\beta) \to 0 \Leftrightarrow \alpha \rightharpoonup \beta$.

Corollary: holds for $C(x, y) = ||\psi(x) - \psi(y)||_2^2$, for ψ neural net.

Numerical insights on UOT and the Sinkhorn divergence

Setting adapted from [Chizat '19]¹⁰.

- Position/mass parameterization $\theta = \{(x_i, r_i)_i\} \in (\mathbb{R}^d \times \mathbb{R}_+)^n$
- Model measure $\theta \mapsto \alpha(\theta) = \sum_{i}^{n} r_{i}^{2} \delta_{x_{i}}$
- Minimize $\mathcal{L}(\alpha(\theta),\beta)$ w.r.t. θ

Updates of the coordinates

$$\begin{aligned} x_i^{(t+1)} &= x_i^{(t)} - \eta_x \nabla_{x_i} \mathcal{L}(\boldsymbol{\alpha}(\boldsymbol{\theta}^{(t)}), \boldsymbol{\beta}), \\ r_i^{(t+1)} &= r_i^{(t)} \cdot \exp\left(-2\eta_r \nabla_{r_i} \mathcal{L}(\boldsymbol{\alpha}(\boldsymbol{\theta}^{(t)}), \boldsymbol{\beta})\right) \end{aligned}$$

 $^{^{10}}$ Chizat, L. (2019). Sparse optimization on measures with over-parameterized gradient descent.

Numerics 1

Parameters:

•
$$C(x,y) = ||x - y||_2^2$$
 on $[0,1]^2$ with $D_{\varphi} = \rho KL$

•
$$\rho = 0.3$$
, $\eta_x = 60.0$, $\eta_r = 0.3$

$$\mathcal{L} = \mathsf{UOT}_{\varepsilon,\rho}, \, \varepsilon = 10^{-3} \qquad \qquad \mathcal{L} = \mathsf{S}_{\varepsilon,\rho}, \, \varepsilon = 10^{-3} \qquad \qquad \mathcal{L} = \mathsf{S}_{\varepsilon,\rho}, \, \varepsilon = 10^{-2}$$

$S_{\varepsilon,\rho}$ should be prefered over $OT_{\varepsilon,\rho}$, and ε encodes a low pass filter effect (for statistical robustness).

Numerics 2

Parameters:

•
$$C(x,y) = ||x - y||_2^2$$
 on $[0,1]^2$ with $\mathcal{L} = S_{\varepsilon,\rho}$

•
$$\varepsilon = 10^{-3}$$
, $\rho = 0.3$, $\eta_x = 60.0$, $\eta_r = 0.3$

$$\mathsf{D}_{\varphi} = \rho \mathrm{KL} \qquad \qquad \mathsf{D}_{\varphi} = \rho \mathrm{TV}$$

The choice of marginals' penalty encodes a variety of priors and behaviours, try them all !

Balanced Gromov-Wasserstein distance

mm-space: $\mathcal{X} = (X, d^{(X)}, \alpha)$ with $(X, d^{(X)})$ complete separable, α positive measure

Definition - GW distance¹¹

Take $\mathcal{X} = (X, d^{(X)}, \alpha)$ and $\mathcal{Y} = (Y, d^{(Y)}, \beta)$ equipped with **probabilities**. One defines $GW(\mathcal{X}, \mathcal{Y}) = \inf_{\{\pi 1 = \alpha, \pi^{\top} 1 = \beta\}} \mathcal{G}(\pi)$ where

$$\mathcal{G}(\pi) \stackrel{\text{\tiny def.}}{=} \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl}.$$

 11 Mémoli, F. (2011). Gromov–Wasserstein distances and the metric approach to object matching.

Specificities of GW

Two key differences with OT

- GW is non-convex (quadratic assignment program)
- $(\mathcal{X}, \mathcal{Y})$ can differ radically in nature.¹²

Isometric mm-spaces

Def: $\mathcal{X} \sim \mathcal{Y} \Leftrightarrow \exists \psi : X \to Y$ bijective isometry s.t. $d_X(x, x') = d_Y(\psi(x), \psi(x'))$ and $\beta = \sum_i \alpha_i \delta_{\psi(x_i)}$ **Prop:** With $\lambda(t) = t^q$, $GW^{\frac{1}{q}}$ distance and definite iff $\mathcal{X} \sim \mathcal{Y}$

¹²Solomon, J., Peyré, G., Kim, V. G., & Sra, S. (2016). Entropic metric alignment for correspondence problems.

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where

$$\mathcal{L}_2(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1, \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2, \beta \otimes \beta).$$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl},$$
$$\mathcal{L}_1(\pi) = \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathsf{KL}(\pi_1, \alpha) + \rho \mathsf{KL}(\pi_2, \beta).$$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}$.

Definition

One defines $UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$ where $\mathcal{L}_2(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(\mathcal{X})} - d_{kl}^{(\mathcal{Y})} \right)^2 \pi_{ik} \pi_{jl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \beta \otimes \beta).$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl},$$
$$\mathcal{L}_1(\pi) = \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathsf{KL}(\pi_1 | \alpha) + \rho \mathsf{KL}(\pi_2 | \beta).$$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where

$$\mathcal{L}_2(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(\mathcal{X})} - d_{kl}^{(\mathcal{Y})} \right)^2 \pi_{ik} \pi_{jl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \boldsymbol{\alpha} \otimes \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \boldsymbol{\beta} \otimes \boldsymbol{\beta}).$$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl},$$

 $\mathcal{L}_1(\pi) = \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathrm{KL}(\pi_1 | \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi_2 | \boldsymbol{\beta}).$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where

$$\mathcal{L}_2(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(\mathcal{X})} - d_{kl}^{(\mathcal{Y})} \right)^2 \pi_{ik} \pi_{jl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \beta \otimes \beta).$$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^2 \pi_{ik} \pi_{jl},$$
$$\mathcal{L}_1(\pi) = \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathsf{KL}(\pi_1 | \boldsymbol{\alpha}) + \rho \mathsf{KL}(\pi_2 | \boldsymbol{\beta}).$$

Theoretical results and conic formulation

- UOT is not convenient to prove the triangle inequality.
- Need to use another formulation called "conic" (COT)
- $ightarrow \mathsf{COT} = \mathsf{OT}$ on a lifted space $\mathfrak{C} = X imes \mathbb{R}_+$
 - Thm 1: UOT is definite.
 - Thm 2: COT is a distance between positive measures.
 - Thm 3: One has UOT = COT.

Theorem [S., Vialard, Peyré]

- 1. UGW is definite up to isometries.
- 2. There exists a conic formulation CGW which is a distance between mm-spaces up to isometry.
- 3. One has UGW \geq CGW.

Implementation and numerics

Implementing UGW

Idea: Entropic regularization + alternate minimization

$$\begin{split} \mathsf{U}\mathsf{GW}_{\varepsilon}(\mathcal{X},\mathcal{Y}) &\stackrel{\text{def.}}{=} \inf_{\pi \geq 0} \mathcal{L}_{2}(\pi) + \varepsilon \mathrm{KL}(\pi \otimes \pi, (\boldsymbol{\alpha} \otimes \boldsymbol{\beta})^{\otimes 2}) \\ &\geq \inf_{\pi,\gamma \geq 0} \mathcal{F}(\pi,\gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma, (\boldsymbol{\alpha} \otimes \boldsymbol{\beta})^{\otimes 2}), \\ \text{where } \mathcal{F}(\pi,\gamma) \stackrel{\text{def.}}{=} \sum_{i,j,k,l} \left(d_{ij}^{(X)} - d_{kl}^{(Y)} \right)^{2} \pi_{ik} \gamma_{jl} \\ &+ \rho \mathrm{KL}(\pi_{1} \otimes \gamma_{1}, \boldsymbol{\alpha} \otimes \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi_{2} \otimes \gamma_{2}, \boldsymbol{\beta} \otimes \boldsymbol{\beta}) \end{split}$$

- Alternate descent = sequence of $UOT_{\varepsilon,\rho}$ problems (Sinkhorn).
- Invariance: (π, γ) optimal $\Rightarrow \forall s > 0, (s\pi, \frac{1}{s}\gamma)$ optimal.
- Numerically we see at optimality $\pi^* = \gamma^*$ (if $m(\pi) = m(\gamma)$).
- \Rightarrow Computes a local minimizer of UGW_{ε}.

Reformulation of the alternate minimization

Define
$$m(\gamma) = \sum_{i,j} \gamma_{ij}$$
 with $\gamma_{1,i} = \sum_j \gamma_{ij}$ and $\gamma_{2,j} = \sum_i \gamma_{ij}$
Proposition - alternate descent \leftrightarrow **solve UOT**
For a fixed γ , $\pi \in \arg\min_{\pi} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma | (\alpha \otimes \beta)^{\otimes 2})$ is the solution of

$$\begin{split} \min_{\pi} & \sum_{i,j} c_{ij}^{\varepsilon,\gamma} \pi_{ij} + \rho m(\gamma) \mathrm{KL}(\pi_{1} | \boldsymbol{\alpha}) + \rho m(\gamma) \mathrm{KL}(\pi_{2} | \boldsymbol{\beta}) \\ & + \varepsilon m(\gamma) \mathrm{KL}(\pi | \boldsymbol{\alpha} \otimes \boldsymbol{\beta}), \quad \text{where} \\ c_{ij}^{\varepsilon,\gamma} \stackrel{\text{def.}}{=} & \sum_{k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^{2} \gamma_{kl} + \rho \sum_{i} \log(\frac{\gamma_{1,i}}{\boldsymbol{\alpha}_{i}}) \gamma_{1,i} \\ & + \rho \sum_{j} \log(\frac{\gamma_{2,j}}{\beta_{j}}) \gamma_{2,j} + \varepsilon \sum_{i,j} \log(\frac{\gamma_{ij}}{\boldsymbol{\alpha}_{i}\beta_{j}}) \gamma_{ij}. \end{split}$$

Define
$$m(\gamma) = \sum_{i,j} \gamma_{ij}$$
 with $\gamma_{1,i} = \sum_j \gamma_{ij}$ and $\gamma_{2,j} = \sum_i \gamma_{ij}$

Proposition - alternate descent \leftrightarrow solve UOT For a fixed γ , $\pi \in \arg \min_{\pi} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma | (\boldsymbol{\alpha} \otimes \boldsymbol{\beta})^{\otimes 2})$ is the solution of $\min_{\pi} \sum_{i,j} \tilde{c}_{ij} \pi_{ij} + \tilde{\rho} \mathrm{KL}(\pi_1 | \boldsymbol{\alpha}) + \tilde{\rho} \mathrm{KL}(\pi_2 | \boldsymbol{\beta}) + \tilde{\varepsilon} \mathrm{KL}(\pi | \boldsymbol{\alpha} \otimes \boldsymbol{\beta}),$ where $(\tilde{c}, \tilde{\rho}, \tilde{\varepsilon})$ depend on the fixed measure γ via a computable

where (c, ρ, ε) depend on the fixed measure γ via a computable formula.

Numerical experiment - outlier discardance

Setup: $(\mathcal{X}, \mathcal{Y}) = \text{two moons} + \text{outlier}$ with Euclidean distance, (α, β) uniform probabilities

UGW performs lazy matchings to avoid outliers.

Numerical experiment - graph matching

Setup: $(\mathcal{X}, \mathcal{Y}) =$ graphs with *n* nodes and geodesic distance, (α, β) uniform probabilities

UGW encodes partial and/or geometrically consistent matchings.

 UGW_{ε} also suffer from **entropic bias**. Adapting from regularized UOT, a potential divergence candidate is

$$\begin{split} \mathsf{SUGW}(\mathcal{X},\mathcal{Y}) \stackrel{\text{def.}}{=} \mathsf{UGW}_{\varepsilon}(\mathcal{X},\mathcal{Y}) - \frac{1}{2} \, \mathsf{UGW}_{\varepsilon}(\mathcal{X},\mathcal{X}) - \frac{1}{2} \, \mathsf{UGW}_{\varepsilon}(\mathcal{Y},\mathcal{Y}) \\ &+ \frac{\varepsilon}{2} (m(\alpha)^2 - m(\beta)^2)^2. \end{split}$$

Open question: Does it debias UGW_{ε} ? Is it positive ? Definite ?

- Beware of entropic regularization: favor $S_{\varepsilon,\rho}$ over $UOT_{\varepsilon,\rho}$
- Flexibility of UOT models through $(C, \rho, \varepsilon) + KL \rightsquigarrow D_{\varphi}$

- Blending of UOT with GW distances
- Computations on GPUs \rightarrow UGW
- Theoretical aspects \rightarrow CGW distance

Implementations - github repositories

- thibsej/unbalanced-ot-functionals
- jeanfeydy/geomloss
- thibsej/unbalanced_gromov_wasserstein

References

- Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences.
- Séjourné, T., Feydy, J., Vialard, F. X., Trouvé, A., & Peyré, G. (2019). Sinkhorn Divergences for Unbalanced Optimal Transport.
- Séjourné, T., Vialard, F. X., & Peyré, G. (2020). The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation.

Thank you !

Supplementary slides

Define $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ l.s.c., convex, $\varphi(1) = 0$, $\varphi'^{\infty} = \lim_{x \to \infty} \frac{\varphi(x)}{x}$. Write $\alpha = \sum_i \frac{\alpha_i}{\delta_{x_i}} \text{ and } \beta = \sum_i \beta_i \delta_{x_i}$ (Same support (x_i))

Definition - φ -divergence

$$\mathsf{D}_{\varphi}(oldsymbol{lpha},eta) = \sum_{eta_i
eq 0} arphi(rac{oldsymbol{lpha}_i}{eta_i})eta_i + arphi'^\infty \sum_{eta_i = 0} oldsymbol{lpha}_i.$$

Examples:

- $\operatorname{KL}(\alpha, \beta) = \sum_{i} (\log(\frac{\alpha_{i}}{\beta_{i}})\alpha_{i} \alpha_{i} + \beta_{i}):$ $\varphi(x) = x \log x - x + 1,$
- TV $(\alpha, \beta) = \sum_i |\alpha_i \beta_i|$: $\varphi(x) = |x 1|$.

¹³Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observation.

- Focus on $\lambda(t) = t^2$ for improved time and memory complexity
- Focus on $D_{\varphi} = KL$ which verifies

$$\begin{split} \mathrm{KL}(\mu\otimes\nu,\boldsymbol{\alpha}\otimes\beta) &= m(\nu)\mathrm{KL}(\mu,\boldsymbol{\alpha}) + m(\mu)\mathrm{KL}(\nu,\beta) \\ &+ (m(\mu) - m(\boldsymbol{\alpha}))(m(\nu) - m(\beta)). \end{split}$$

 $\Rightarrow\,$ Given $\gamma,$ minimizing w.r.t. π amounts to solve a regularized UOT problem.

Algorithm 1 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize (π, γ) and (f, g)
- 2: while (π, γ) has not converged do
- 3: Update $\gamma \leftarrow \pi$ and compute the cost $\tilde{c} \leftarrow c^{\varepsilon,\gamma}$
- 4: Update parameters $(\tilde{\rho}, \tilde{\varepsilon}) \leftarrow (m(\pi)\rho, m(\pi)\varepsilon)$
- 5: Compute (f, g) that solves UOT $(\mu, \nu, \tilde{c}, \tilde{\rho}, \tilde{\varepsilon})$

6: Update
$$\gamma_{ij} \leftarrow \exp \left| (f_i + g_j - \tilde{c}_{ij}) / \tilde{\epsilon} \right| \frac{\alpha_i \beta_j}{\alpha_i \beta_j}$$

7: Rescale
$$\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$$

8: Return (π, γ) .

Detailed algorithm

Algorithm 2 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize $\pi = \gamma = \mu \otimes \nu / \sqrt{m(\mu)m(\nu)}$, g = 0.
- 2: while (π, γ) has not converged do

3: Update
$$\pi \leftarrow \gamma$$
, then $c \leftarrow c_{\pi}^{\varepsilon}$, $\tilde{\rho} \leftarrow m(\pi)\rho$, $\tilde{\varepsilon} \leftarrow m(\pi)\varepsilon$

4: while (f, g) has not converged **do**

5:
$$\forall x, f(x) \leftarrow -\frac{\tilde{\varepsilon}\tilde{\rho}}{\tilde{\varepsilon}+\tilde{\rho}} \log\left(\int e^{(g(y)-c(x,y))/\tilde{\varepsilon}} \mathrm{d}\nu(y)\right)$$

6:
$$\forall y, g(y) \leftarrow -\frac{\tilde{\varepsilon}\tilde{\rho}}{\tilde{\varepsilon}+\tilde{\rho}} \log\left(\int e^{(f(x)-c(x,y))/\tilde{\varepsilon}} d\mu(x)\right)$$

7: Update
$$\gamma(x, y) \leftarrow \exp\left[(f(x) + g(y) - c(x, y))/\tilde{\varepsilon}\right] \mu(x)\nu(y)$$

8: Rescale
$$\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$$

9: Return (π, γ) .